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A field theoretical method for fluctuating hydrodynamics with preserved fluctuation-dissipation relations is
reformulated. By assuming that the correlations including momentum are irrelevant in the long time region, we
demonstrate that the equation obtained from the first-order perturbation is reduced to that for standard mode-
coupling theory.
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I. INTRODUCTION

In the vicinity of the glass transition point, the dynamics
of supercooled liquids becomes extremely slow �1–3�. The
dynamics of glass transition has attracted considerable atten-
tion over the years. Among the many theoretical approaches
employed to study the dynamics, the mode-coupling theory
�MCT� is one of the most successful ones that can be “de-
rived” from first principles, and it explains many aspects of
observations in experiments and simulations, such as multi-
step relaxation processes and the Debye-Waller parameter
�4–7�.

Despite these advantages of the MCT, some controversial
aspects remain regarding the validity of the standard MCT
�SMCT�. Indeed, the SMCT predicts the existence of
ergodic-nonergodic �ENE� transition, where the system be-
comes nonergodic below a critical temperature or above a
critical density, while real systems are still ergodic in experi-
ments and simulations at low temperature or high density.
Furthermore, the SMCT predicts an algebraic divergence of
the viscosity at the critical point of ENE transition, but the
viscosity for real supercooled liquids obeys the Vogel-
Fulcher law near the glass transition point. Moreover, the
Vogel-Fulcher temperature is lower than the critical tempera-
ture of ENE transition. To overcome these difficulties of the
SMCT, many investigations have been carried out �8–29�. It
may be concluded that the failures of the SMCT originated
from the decoupling approximation of a four-point correla-
tion function. In fact, Mayer et al. �21� introduced a toy
model that does not have any spatial degrees of freedom, and
they demonstrated that the ergodicity of the system at a low
temperature is recovered when higher-order correlations are
included. On the other hand, there exists ENE transition
within the framework of the decoupling approximation. This
suggests that we should not adopt the decoupling approxima-
tion but rather, use an approximation that contains higher-
order correlations. However, the systematic improvement of
the approximation by using the projection operator technique
is difficult within the conventional framework.

The field theoretical approach is a promising method that
can systematically improve approximations. Another advan-

tage of the field theory regards the response function and the
fluctuation-dissipation relations �FDR�. Following the
Martin-Siggia-Rose �MSR� method �30�, we can construct an
action by the introduction of conjugate fields, for a set of
nonlinear Langevin equations, and use perturbative expan-
sion. Currently, however, there are points of confusion re-
lated to the use of this approach. Indeed, among many field
theoretical investigations �8,10,12,20,23,27–29�, only a few
papers have reported successful derivation of the SMCT in
lowest order perturbation from nonlinear Langevin equa-
tions. One of the main confusing areas is the violation of
FDR in each order of naive perturbative expansions of the
set of nonlinear Langevin equations, as indicated by
Miyazaki and Reichman �20�.

In order to recover FDR preservation at each order of
perturbation, recently, Andreanov, Biroli, and Lefèvre �ABL�
�23� indicated the importance of the time-reversal symmetry
of action, and they introduced some additional field vari-
ables. Indeed, ABL demonstrated that we can construct a
FDR-preserving field theory, starting from the nonlinear
Langevin equations that contain both the Dean-Kawasaki
equation and the fluctuating nonlinear hydrodynamic �FNH�
equations. Kim and Kawasaki �28� further improved the
ABL method and derived a mode coupling equation, similar
to the SMCT, from the Dean-Kawasaki equation �11,31� in
the first-loop order via the irreducible memory functional
approach. This approach is essential for treating the dynam-
ics of dissipative systems such as the interacting Brownian
particle system.

On the other hand, Das and Mazenko �8� presented a pio-
neering paper on the field theoretical approach of FNH. They
suggested the existence of a cutoff mechanism in which the
system is always ergodic, even at a low temperature. Later,
Schmitz, Dufty, and De �SDD� �10� arrived at the same con-
clusion through a concise discussion, however, they de-
stroyed the Galilean invariance of FNH equations. On the
other hand, Kawasaki �11� suggested that FNH equations re-
duce to the Dean-Kawasaki equation in the long time limit.
Furthermore, ABL �23� suggested the existence of ENE tran-
sition in FNH, and indicated that the calculation by Das and
Mazenko breaks FDR preservation. Moreover, Cates and Ra-
maswamy �22� indicated that the calculation by Das and Ma-
zenko violates the momentum conservation. Das and Ma-
zenko �32�, however, responded that the indications by ABL
and those by Cates and Ramaswamy do not imply fatal er-
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rors on the part of Das and Mazenko �8� but rather, reveal the
existence of some misleading arguments. Thus, there con-
tinue to be points of confusion regarding the use of the field
theory in glass transition, and it remains to be concluded
whether ENE transition exists in FNH.

In this paper, we apply the method developed by Kim and
Kawasaki �28� to FNH to clarify the current situation with
regard to the application of the FDR-preserving field theoret-
ical approach to glass transition. The organization of this
paper is as follows. In the next section, we introduce FNH,
which describes the time evolutions of the density field and
the momentum field, agitated by a fluctuating random force
for compressible fluids. This set of equations is equivalent to
that used by Das and Mazenko �8� and ABL �23�. In the first
half of Sec. III, we create an action invariant under the time-
reversal transformation. In order to maintain the linearity of
the time-reversal transformation, we introduce some addi-
tional variables and their conjugate fields. This linearity of
the time-reversal transformation makes FDR-preserving field
theory possible. We also introduce a complete set of
Schwinger-Dyson equations of our problem, and we summa-
rize some identities used for perturbative calculation in the
latter half of Sec. III. Section IV is the main part of our
paper, where we explain the detailed calculations of pertur-
bative expansion within the first-loop order. The calculations
are done under the assumption that the correlations including
momentum can be ignored in the long time limit. Within this
approximation, we predict the existence of ENE transition,
and we obtain an equation equivalent to that obtained by the
SMCT. In the last section, we discuss the validity of our
assumptions and compare our results with others. We also
summarize our results. In Appendix A, we present the details
of the time-reversal transformation and provide some rel-
evant relations derived from the time-reversal transforma-
tion. In Appendix B, we present the details of the calculation
for one component of the Schwinger-Dyson equation. In Ap-
pendix C, we show some relations for the equal-time corre-
lations and self-energies. In Appendix D, we present explicit
expressions for all three-point vertex functions.

II. FLUCTUATING NONLINEAR HYDRODYNAMICS

In this section, we briefly summarize our basic equations,
FNH, and MSR action �30�. The argument in this section is
parallel to those presented in the previous studies �8,23�.

Let us describe a system of supercooled liquids in terms
of a set of equations for the density field ��r , t� and the
momentum field g�r , t�. For the continuity equation of mo-
mentum, we employ the Navier-Stokes equation for com-
pressible fluids supplemented with the osmotic pressure in-
duced by the density fluctuation and the noise caused by the
fast fluctuations. In order to keep the analysis simple, we
ignore the fluctuations of energy �33� as assumed by Das and
Mazenko �8�, SDD �10�, and ABL �23�.

The time evolutions of the collective variables � and g,
which we call FNH equations, are given by �8,23�

�t� = − � · g , �1�

�tg� = − ���

�FU

��
− ��

g�g�

�
− L��

g�

�
+ ��. �2�

Here, �� is the Gaussian white noise with zero mean, which
satisfies

����r,t����r�,t��� = 2TL����r − r����t − t�� , �3�

where T is temperature and L�� is the operator tensor acting
on any field variables h�r� as

L��h�r� = − ��0� 1
3���� + ����2� + �0�����h�r� , �4�

with shear viscosity �0 and bulk viscosity �0. Note that here-
after, the Boltzmann’s constant is set to unity. In this paper,
greek indices such as � are used for the spatial components,
and Einstein’s rule g�g����=1

3 g�
2 is adopted. The effective

free-energy functional F=FK+FU consists of the kinetic part
FK and the potential part FU as

FK =
1

2
	 dr

g2�r�
��r�

, �5�

FU =
T

m
	 dr��r�
ln���r�

�0
� − 1


−
T

2m2 	 drdr�c�r − r�����r����r�� , �6�

where m is the mass of a particle and c�r� is the direct cor-
relation function �34�. The potential part FU of the effective
free-energy functional has the same form as the
Ramakrishnan-Yussouff form �35�. Here, ���r , t����r , t�
−�0 is the local density fluctuation around the mean density
�0. From relations �5� and �6�, we can rewrite �1� and �2� as

�t� = − ���
�F

�g
� , �7�

�tg� = − ���

�F

��
− ���g�

�F

�g�
� − g���

�F

�g�

− L��

�F

�g�

+ ��,

�8�

where we have used �����FK /���=−g�����F /�g��.
In general, it is impossible to solve the set of nonlinear

partial differential equations �1�–�6�. In this paper, we adopt
the MSR field theory �30�. Let us derive the MSR action.
Because the collective variables � and g satisfy the dynamic
equations �7� and �8�, the average of an observable A�� ,g� is
expressed as

�A� = �	 D��Dg�A���,g������ − ����g� − g��
=	 D�DgJ��,g�A��,g���
�t� + ���

�F

�g
�


	 �
�

�
�tg� + ���

�F

��
+ ���g�

�F

�g�
� + g���

�F

�g�

+ L��

�F

�g�

− ��
� , �9�
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where J�� ,g� is the Jacobian. As written in Ref. �36�, the
Jacobian J�� ,g� can be independent of both � and g when we
employ the Itô interpretation. When we replace the � func-
tions by the functional integrals of the conjugate fields �̂ and
ĝ�, the average of A in Eq. �9� can be rewritten as

�A� =
1

Z0
	 D�DgD�̂DĝA��,g�

	 �exp�	 drdt�− �̂
�t� + ���
�F

�g
�


− ĝ�
�tg� + ���

�F

��
+ ���g�

�F

�g�
�

+ g���

�F

�g�

+ L��

�F

�g�

− ��
��� , �10�

where Z0 is the normalization constant. By means of Eq. �3�,
the average of A is given by

�A� =
1

Z0
	 D�DgD�̂DĝA��,g�

	 exp�	 drdt�− �̂
�t� + ���
�F

�g
�


− ĝ�
�tg� + ���

�F

��
+ ���g�

�F

�g�
�

+ g���

�F

�g�

+ L��

�F

�g�

��

	 �exp�	 drdtĝ�����
=

1

Z0
	 D�DgD�̂DĝA��,g�eS��,�̂,g,ĝ�, �11�

where the MSR action S�� , �̂ ,g , ĝ� is defined by

S��, �̂,g, ĝ� � 	 drdt�− �̂
�t� + ����
�F

�g�
�
 + Tĝ�L��ĝ�

− ĝ�
�tg� + ���

�F

��
+ ���g�

�F

�g�
� + g���

�F

�g�

+ L��

�F

�g�

� . �12�

III. CONSTRUCTION OF FDR-PRESERVING FIELD
THEORY

A. Time-reversal symmetry in action

In order to construct a FDR-preserving field theory, it is
necessary to introduce some new variables and the linear
time-reversal transformation, which makes the MSR action
invariant. It is easy to check whether the action �12� is in-
variant under the time-reversal transformation �23�

t → − t, � → �, �̂ → − �̂ +
1

T

�F

��
,

g� → − g�, ĝ� → ĝ� −
1

T

�F

�g�

. �13�

Here, we adopt the method developed by Kim and Kawasaki
�28�, in which they introduced the new variable


KK �
�FU

��
− A � �� , �14�

where A��� represents the linear part of �FU /�� on ��. Kim
and Kawasaki �28� confirmed that the density correlation
function of the Dean-Kawasaki equation for the noninteract-
ing case satisfies the diffusion equation nonperturbatively.
Furthermore, they concluded that the nonergodic parameter
is the same as that of the SMCT.

Following the idea of Kim and Kawasaki �28�, to elimi-
nate the nonlinearity of the time-reversal transformation of
�13�, we introduce new variables 
 and �,


 �
1

T

�F

��
− K � �� , �15�

�� �
1

T

�F

�g�

−
1

T�0
g�, �16�

where the operator K acts on any function h as

K � h�r� �
1

m�0
	 dr����r − r�� −

�0

m
c�r − r���h�r�� .

�17�

It should be noted that the right-hand sides �RHS� of Eqs.
�15� and �16� do not include the zeroth and first order of ��
and g. The choices of Eqs. �15� and �16� differ from those
used by ABL �23�. The implication of the difference will be
discussed in Sec. V.

As a result of the introduction of 
 and ��, action �12� can
be rewritten as

S��� =	 drdt„− �̂��t� + ������0
−1g� + T�����

− ĝ���tg� + T����K � �� + 
� + L����0
−1g� + T���

+ ���g���0
−1g� + T���� + g�����0

−1g� + T����

+ Tĝ�L��ĝ� − 
̂�
 − f
� − �̂���� − f��
�… , �18�

where we have introduced

f
���,g� �
1

T

�F

��
− K � �� , �19�

f��
���,g� �

1

T

�F

�g�

−
1

T�0
g�. �20�

We have also used the abbreviation of a set of the field vari-

ables �T���� , �̂ ,
 , 
̂ ,g , ĝ ,� , �̂�. Here, the time-reversal
transformation, which makes action �18� invariant, is given
by

t → − t, � → �, �̂ → − �̂ + 
 + K � �� ,
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g� → − g�, ĝ� → ĝ� − �� −
1

T�0
g�, 
 → 
 ,


̂ → 
̂ + �t�, �� → − ��, �̂� → − �̂� − �tg�. �21�

We can thus construct a FDR-preserving field theory, due to
the linearity of the time-reversal transformation �21�. As in
typical cases, let us split action �18� into the Gaussian part
Sg, which represents the bilinear terms of the field variables,
and the non-Gaussian part Sng as

S��� = Sg��� + Sng��� , �22�

where

Sg��� =	 drdt�− �̂��t� + ��g� + T�0���a�

− ĝ���tg� + T�0��K � �� + T�0��
 + L����0
−1g�

+ T���� + Tĝ�L��ĝ� − 
̂
 − �̂���� , �23�

and

Sng��� =	 drdt�− �̂��������0
−1g� + T�����

− ĝ��T�����K � �� + 
� + ���g���0
−1g� + T����

+ g�����0
−1g� + T���� + 
̂f
���,g� + �̂�f��

���,g�� .

�24�

Note that we present some relations in the time-reversal sym-
metry of this action in Appendix A.

It should be noted that continuity equation �7� can be
rewritten as

�t� = − �����T�� + �0
−1g���

= − � · g − T�0�� · �� − ������T�� + �0
−1g��� , �25�

where we have used Eq. �16�. From Eqs. �1� and �25�, we
obtain the identity

T�0���� + ������T�� + �0
−1g��� = 0. �26�

Therefore, the sum of the underlined terms in Eqs. �23� and
�24� should be zero. However, each underlined term is sepa-
rately included in the Gaussian part �23� or the non-Gaussian
part �24�. To satisfy the action invariant under the time-
reversal transformation in each part, we should retain these
terms in the calculation.

B. Exact results of Schwinger-Dyson equation

In this section, we derive a set of closed equations of the
two-point correlation function. Let us express the two-point
correlation function in the matrix form as

G�r − r�,t − t�� � ���r,t��T�r�,t��� , �27�

and its ��� component is represented by

G����r − r�,t − t�� � ���r,t����r�,t��� , �28�

where � or �� is one of the components of �. Note that
hereafter, we adopt the simple notation �=� to represent the

contribution from ��. With the aid of the Fourier transform
of h�r�

h�r� =	 dk

�2
�3eik·rh�k� , �29�

and action �22�, we obtain the Schwinger-Dyson �SD� equa-
tion

�G0
−1 · G��k,t� − �� · G��k,t� = I��t� , �30�

where � and I are, respectively, the self-energy matrix and
the unit matrix. Here, the free propagator matrix G0 satisfies

Sg��� = −
1

2
	 dX1dX2�T�X1�G0

−1�X1 − X2���X2� , �31�

where we have used the abbreviations as Xi��ri , ti� with i
=1,2. We note that the SD equation �30� is an equation for
16	16 matrices.

Here, we indicate that G���k ,0� is related to the static
structure factor S�k� as

S�k� �
1

m�0
G���k,0� . �32�

From the definition of the direct correlation function �34�,
Eq. �32� can be rewritten as

S�k� = �1 −
�0

m
c�k��−1

=
1

m�0
K−1�k� . �33�

Let us explicitly write some components of the SD equation

�tG���k,t� + ik�Gg���k,t� + iT�0k�G����k,t� = F�̂��k,t� ,

�34�

G
��k,t� + �
̂
̂�k,0�G���k,t� = F
̂��k,t� , �35�

�tGg���k,t� + TL��� 1

T�0
Gg���k,t� + G����k,t��

+ iT�0k��K�k�G���k,t� + G
��k,t�� = Fĝ���k,t� ,

�36�

G����k,t� + ��̂��̂�
�k,0�Gg���k,t� = F�̂���k,t� , �37�

where � is one of the components of �T���� ,
 ,g ,��. Here,

Eqs. �34�–�37� are obtained from �̂�, 
̂�, ĝ��, and �̂��
components of the SD equation, respectively. The derivation
of Eq. �35� is shown in Appendix B as one example. The
derivation of the other equations is parallel to that for Eq.
�35�. We express the RHS of Eqs. �34�–�37� as a unified form

F�̂� where �̂ is one of the components of �̂T���̂ , 
̂ , ĝ , �̂�.
From a parallel argument to derive F
̂�, i.e., the RHS of Eq.
�B5�, F�̂� satisfies
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F�̂��k,t� = 	
0

t

ds
− ��̂�̂�k,t − s��K�k�G���k,s� + G
��k,s��

+ ��̂
̂�k,t − s��sG���k,s� − ��̂ĝ�
�k,t − s�

	� 1

T�0
Gg���k,s� + G����k,s��

+ ��̂�̂�
�k,t − s��sGg���k,s�
 . �38�

These components of the SD equation are so complicated
because of the self-energies. However, we can simplify these
components with the aid of some exact relations. First, from
Eqs. �C4� and �C8�, Eqs. �35� and �37� are, respectively,
simplified as

G
��k,t� = F
̂��k,t� , �39�

G����k,t� = F�̂���k,t� . �40�

Second, from Eqs. �23� and �24�, the following identity is
obtained:

� �S���
��̂�r,t�

��r�,t��� = 0. �41�

This identity can be expressed by the explicit form

���t� + � · g + T�0 � · � · ����T� + �0
−1g����r,t���r�,t��� = 0.

�42�

With the aid of identity �26�, the Fourier transform of this
equation becomes

�tG���k,t� + ik�Gg���k,t� = 0. �43�

This equation implies that our SD equation preserves the
mass conservation law. We also derive the identity by the
substitution of �43� from �34�.

F�̂��k,t� = ik�T�0F�̂���k,t� . �44�

IV. PERTURBATION IN FIRST-LOOP ORDER

In this section, we develop the perturbative calculation of
the SD equation within the first-loop order approximation.
When we assume that the correlations including momentum
are irrelevant in the long time limit, we can obtain an equa-
tion for the nonergodic parameter in the long time limit.

From Eqs. �36�, �39�, �40�, and �43�, we thus obtain the
time evolution of the density correlation function as

�t
2G���k,t� + �0

−1L�tG���k,t� + T�0k2K�k�G���k,t�

= − T�0k2F
̂��k,t� − ik�Fĝ���k,t� + iTLk�F�̂���k,t� ,

�45�

where L����L��. It is remarkable that the left-hand side
�LHS� of Eq. �45� is equivalent to the SMCT without
memory functions when we omit the terms that include the
self-energies. However, this equation is quite complicated,
because the self-energies are included in F
̂�, Fĝ��, and F�̂��.
Therefore, we restrict our interest to the calculation of the
self-energies in the first-loop order perturbation in the latter
part of this paper.

In the first-loop order perturbation, the self-energy ��̂1�̂1�
is expressed as

��̂1�̂1�
�X1,X1�� =

1

2 �
�2,�3,�2�,�3�

	 dX2dX3dX2�dX3�

	 V�̂1�2�3
�X1,X2,X3�V�̂1��2��3�

�X1�,X2�,X3��

	G�2�2�
�X2 − X2��G�3�3�

�X3 − X3�� , �46�

where �̂1 or �̂1� is one of the components of �̂, and �i or �i�
is one of the components of �. Here, the three-point vertex
V�̂1�2�3

is defined by

V�̂1�2�3
�X1,X2,X3� �

�3Sng���
��1�X1���2�X2���3�X3�

. �47�

We list all three-point vertices in Appendix D. Note that
there are no four-point correlation functions including both
�̂1 and �̂1�.

Within the first-loop order approximation, F�̂� in Eq. �38�
is reduced to

F�̂��k,t� � 	
0

t

ds„��̂
̂�k,t − s��sG���k,s� − �T�0�−1��̂ĝ�
�k,t − s�Gg���k,s� − ��̂ĝ�

�k,t − s�F�̂���k,s�

+ ��̂�̂�
�k,t − s���sGg���k,s� + ik�T�0�K�k�G���k,s� + G
��k,s���…

� 	
0

t

ds���̂
̂�k,t − s��sG���k,s� − �T�0�−1��̂ĝ�
�k,t − s�Gg���k,s� − ��̂�̂�

�k,t − s��0
−1L��Gg���k,s�� . �48�

We have used Eqs. �36�, �39�, and �40� and eliminated higher order contributions to obtain the final expression. We have also
used Eq. �40� and the relation
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��̂�̂�k,t� � − ik�T�0��̂�̂�
�k,t� , �49�

which is only valid in the first-loop order, for the first equal-
ity in Eq. �48�. Let us show expression �49�. The self-energy
��̂�̂ should contain the vertex V�̂�g�

or V�̂���
. Among these

two vertices, vertex V�̂���
is irrelevant within the first-loop

order calculation. Indeed, the self-energy with vertex V�̂���

should contain the propagator G��� that is equal to F��� from
Eq. �40� and is the first-loop order. Thus, eventually, the
self-energy ��̂�̂ including V�̂���

becomes a higher order cor-
rection, as shown in Fig. 1. On the other hand, from Eqs.
�D1� and �D9�, the vertices V�̂�g�

and V�̂��g�
satisfy the rela-

tion

V�̂�g�
�X1,X2,X3� = T�0�r1�V�̂��g�

�X1,X2,X3� . �50�

Thus, we obtain relation �49�.
Let us calculate some typical terms, such as F
̂��k , t�, that

appear on the RHS of Eq. �45� in the long time limit under
the first-loop order approximation. For simplicity, we assume
that the correlations including momentum to be negligible in
the long time region. For this purpose, first, we calculate
�
̂
̂�k , t�. Among the three-point vertex functions listed in

Appendix D, there are only two vertices, �D3� and �D4�, that
include 
̂. Substituting �D3� and �D4� into �46� with �̂1

= �̂1�= 
̂, the expression of �
̂
̂�k , t� at the first-loop order is
given by

�
̂
̂�k,t� =	 dq

�2
�3� 1

2m2�0
4G���q,t�G���k − q,t�

+
1

Tm�0
4 �Gg���q,t�Gg���k − q,t�

+ G�g�
�q,t�G�g�

�k − q,t��

+
2

T2�0
4Gg�g�

�q,t�Gg�g�
�k − q,t�� . �51�

Thus, in the limit t→�, the first term of F
̂��k , t� in Eq. �48�
can be approximated by

	
0

t

ds�
̂
̂�k,t − s��sG���k,s�

� �
̂
̂�k,t�	
0

t

ds�sG���k,s�

�
G���k,t� − G���k,0�

2m2�0
4 	 dq

�2
�3G���q,t�G���k − q,t� .

�52�

Here, the last expression is obtained from the assumption
that the correlations including momentum are irrelevant in
the long time limit.

Similarly, with the aid of �46� and �D3�–�D8�, �
̂ĝ�
�k , t� at

the first-loop order calculation reduces to

�
̂ĝ�
�k,t� � −	 dq

�2
�3

iT

m�0
2q��K�q�G���q,t� + G
��q,t��G���k − q,t�

= −
iT

m�0
2 	 dq

�2
�3q��K�q�G���q,t� + F
̂��q,t��G���k − q,t�

� −
iT

m�0
2 	 dq

�2
�3q�K�q�G���q,t�G���k − q,t�

= −
iTk�

mk2�0
2 	 dq

�2
�3k�q�K�q�G���q,t�G���k − q,t� , �53�

in the limit t→�. The first equality in �53� originates from the assumption that the correlations including momentum are
irrelevant in the long time limit. For the second equality in �53�, we have used Eq. �39�. To obtain the third equality in �53�,
we have ignored the contribution from F
̂�. This simplification can be justified at the first-loop order approximation, because
F
̂� is the first or above loop order function. To obtain the last expression in �53�, we have used the fact that the density
correlation function depends on time and the absolute value of the wave vector. From Eq. �53�, the second term of F
̂��k , t� in
Eq. �48� becomes

FIG. 1. A diagram of the self-energy ��̂�̂ produced by vertex
V�̂���

. From Eq. �40�, the first-loop order self-energy on the left-
hand side of the figure can be treated as a second-loop order one as
shown on the right-hand side of the figure.
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−
1

T�0
	

0

t

ds�
̂ĝ�
�k,t − s�Gg���k,s� �

i

mk2�0
3 	 dq

�2
�3k�q�K�q�G���q,t�G���k − q,t�	
0

t

dsk�Gg���k,s�

=
− 1

mk2�0
3 	 dq

�2
�3k�q�K�q�G���q,t�G���k − q,t�	
0

t

ds�sG���k,s�

= −
G���k,t� − G���k,0�

mk2�0
3 	 dq

�2
�3k�q�K�q�G���q,t�G���k − q,t� , �54�

where we have used Eq. �43� in the second equality. The last
term of F
̂� in Eq. �48� is zero because �
̂�̂�

�k , t� and
Gg���k , t� are zero in the long time limit.

Thus, we obtain the expression for F
̂��k , t� in Eq. �48�
from Eqs. �52� and �54� at the first-loop order as

F
̂��k,t� =	 dq

�2
�3� 1

2m2�0
4 −

1

mk2�0
3k�q�K�q��

	G���q,t�G���k − q,t��G���k,t� − G���k,0�� ,

�55�

in the limit t→�. Similarly, we evaluate ik�Fĝ���k , t� and
F�̂���k , t� within the first-loop order as

ik�Fĝ���k,t� =	 dq

�2
�3�−
T

m�0
2k�q�K�q�

+
T

2k2�0
�k�q�K�q� + k��k� − q��K�k − q��2�

	 G���q,t�G���k − q,t��G���k,t� − G���k,0�� ,

�56�

and

F�̂���k,t� = 0, �57�

in the limit t→�.
From the above expressions for F
̂��k , t�, Fĝ���k , t�, and

F�̂���k , t�, we can evaluate the RHS of Eq. �45� in the limit
t→�. We note that the first and second terms on the LHS of
Eq. �45� are zero in the long time limit, because the time
derivatives of the density correlation functions should be
zero in such a region. Therefore, the self-consistent equation
of the nonergodic parameter f�k�, which is defined by

f�k� � lim
t→�

G���k,t�
G���k,0�

, �58�

is obtained as

f�k� =
M�k�

1 + M�k�
, �59�

where

M�k� �
�0S�k�
2mk4 	 dq

�2
�3Vk,q
2 S�p�S�q�f�p�f�q� , �60�

with

Vk,q � k��q�c�q� + p�c�p�� , �61�

where we have used p�k−q and the static structure factor
�32�. This set of self-consistent equations �58�–�61� for the
nonergodic parameter is equivalent to that in the SMCT.

V. DISCUSSION AND CONCLUSION

A. Discussion

In this paper, we formulated the FDR-preserving field
theory for FNH. The SMCT-like equation obtained under the
first-loop order approximation in the preceding section might
be the first step toward constructing a correct theory beyond
the SMCT when higher-order perturbations are included.
However, some issues remain to be clarified with regard to
the analysis. Let us discuss these issues through comparison
with other field theoretical approaches.

To analyze the SD equation, we considered the important
assumption that the correlations including momentum are
negligibly small in the long time region. This assumption is
crucial to discuss whether ENE transition exists. Indeed, if
we assume that the contributions from momentum are negli-
gible, FNH equations are reduced to the Dean-Kawasaki
equation, as indicated by Kawasaki �11�. On the other hand,
there are several indirect evidences for the justification of
this approximation. First, we note that a numerical simula-
tion exhibits fast relaxations of the correlations including
momentum �37�. Second, it is known that the density-density
correlation G�� is connected to the correlation in the longi-
tudinal mode k�Gg��, which is proportional to �tG��. Since
the system is almost stationary, any terms including the time
derivative are small. Thus, the contributions from the corre-
lation including momentum can be ignored in the slow dy-
namics in the motion of the density field.

Let us compare our results with those obtained in other
field theoretical researches, taking into account the following
four aspects. �i� Is the basic model adequate? �ii� Is the
analysis FDR preserved? �iii� Are the approximations to ana-
lyze the density correlation function valid in the limit t→�?
�iv� What is the behavior of the density correlation function
in the limit t→�? The results of the comparison are summa-
rized in Table I.
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First, we compare our approach with that of ABL �23�. As
can be seen in Table I, ABL predicted the nonergodic param-
eter to be unity, a value independent of the wave number.
This result is clearly in contrast to the observations in experi-
ments and simulations. It might be caused by the definition
of the new set of additional fields. Indeed, we have intro-
duced 
 in Eq. �15� and � in eq. �16�, but ABL �23� used


ABL �
�F

��
and ��,ABL �

�F

�g�

. �62�

These new variables include the linear terms of �� and g, but
our additional variables, 
 and �, do not include the linear
terms. As a result, the order of correlations, which include
the new variables 
 and �, differ from ours. Indeed, G
� and
G��� are the first or above loop orders in Eq. �39� and Eq.
�40�, while G
� and G��� include the tree diagrams in the
calculations of ABL. Therefore, we believe that Eq. �62� is
not appropriate, and that Eqs. �15� and �16� should be used
instead.

Next, we compare our results with those of Kim and Ka-
wasaki �28�. Their method is almost parallel to the one we
used. However, their basic equation is not the FNH equations
but the Dean-Kawasaki equation. Thus, their MCT equation
without interactions is the diffusion equation. On the other
hand, our MCT equation �45� without a memory kernel is an
equation for a damped oscillator. Thus, the existence of the
momentum conservation equation in the basic equation natu-
rally leads to the existence of the acceleration term in the
MCT equation.

Third, let us compare our results with those of SDD �10�,
who used a simplified model of FNH. Although the approxi-
mation used in this study is similar to that used by SDD, the
Galilean invariance is not preserved in their model equation.
This implies that the violation of the conservation law cause
the artificial cutoff mechanism.

Fourth, we compare our results with those of Das and
Mazenko �8�. One important difference between the two re-
sults is that Das and Mazenko consider V, which satisfies the
constraint V�g /�, as one collective variable. On the other
hand, we introduce the new field variables, 
 in Eq. �15� and

� in Eq. �16�, to satisfy FDR. Thus, their explicit expressions
differ from ours. Second, let us discuss their conclusion on
the existence of the cutoff mechanism, i.e., G���G��̂=0 in
the long time limit. As indicated by ABL �23�, the relation
G���G��̂, used by Das and Mazenko �see Eq. �6.62� in �8��,
does not preserve FDR. Thus, we cannot conclude G��=0
from the relation G��̂=0. However, the relation G��̂=0,
which was derived from their nonperturbative analysis,
might be valid. On the other hand, from Eq. �A5�, our FDR-
preserving calculation under the first-loop order perturbation
suggests G��̂=K�k�G��+G
��0, for which we used the nu-
merical result of the nonergodic parameter. Thus, our result
in the first-loop order perturbation on G��̂ is not consistent
with that of Das and Mazenko. To resolve this discrepancy
between their theory �8� and ours, or to verify their analysis
of the cutoff mechanism, we need to find some identical
relations without using approximations.

B. Conclusion

In this paper, we reformulate a FDR-preserving field
theory starting from FNH. By assuming that the correlations
including momentum are irrelevant in the long time region,
we have shown that the nonergodic parameter under the first-
loop order approximation satisfies an equation that is equiva-
lent to the SMCT in the long time limit. Thus, we believe
that by analyzing correlations in higher-loop orders, we will
be able to construct a correct theory to explain the experi-
mental and numerical results.
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TABLE I. The comparison of our results with Das and Mazenko �DM� �8�, SDD �10�, and ABL �23� and Kim and Kawasaki �KK� �28�.
We list the results on the four points: �i� the used model, �ii� whether FDR is preserved in the perturbation, �iii� the used approximation to
derive the density correlation function in the limit t→�, and �iv� the behavior of the nonergodic parameter f�k�. Here, the expression
Gg�→0 means that the correlations including momentum become zero in the long time limit. fSMCT�k� means the nonergodic parameter is
equivalent to that of SMCT.

Reference �i� Model �ii� FDR �iii� Approximations
�iv�Nonergodic

parameter

DM �8� FNH Nonpreserve Nonperturbative 0

SDD �10� FNH with violation of
Galilean invariance

Preserve first-loop order,
Gg�→0

0

ABL �25� Dean-Kawasaki and
FNH

Preserve first-loop order,
Gg�→0

1

KK �32� Dean-Kawasaki Preserve First-loop order fSMCT�k�
This work FNH Preserve First-loop order,

Gg�→0
fSMCT�k�
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APPENDIX A: TIME-REVERSAL TRANSFORMATION AND FDR

From the linearity of the time-reversal transformation, we can rewrite Eq. �21� as follows:

�
�

�̂





̂

g�

ĝ�

��

�̂�

�→�
1 0 0 0 0 0 0 0

K − 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0

�t 0 0 1 0 0 0 0

0 0 0 0 − ��� 0 0 0

0 0 0 0 −
1

T�0
��� ��� − ��� 0

0 0 0 0 0 0 − ��� 0

0 0 0 0 − ����t 0 0 − ���

��
�

�̂





̂

g�

ĝ�

��

�̂�

� . �A1�

When we express this time-reversal transformation matrix as
O, Eq. �21� can be represented by �→O�. This implies that
the correlation function satisfies

G�− t� = OG�t�OT. �A2�

Similarly, the self-energy satisfies

��− t� = �OT�−1��t�O−1, �A3�

where we have used relation �30� or

G−1 = G0
−1 − � . �A4�

Here, we avoid writing all components of the time-
reversal symmetry relations �A2� and �A3�, because they are
very long. Instead, we present some typical relations, which

are necessary for the calculation of the 
̂� component of the
SD equation,

G�̂��k,t� = ��− t��K�k�G���k,t� + G
��k,t�� , �A5�

G
̂��k,t� = − ��− t��tG���k,t� , �A6�

Gĝ���k,t� = ��− t�� 1

T�0
Gg���k,t� + G�̂���k,t�� , �A7�

G�̂���k,t� = − ��− t��tGg���k,t� . �A8�

Here, we summarize some relevant relations among the self-
energies

�
̂��k,t� = ��t���t�
̂
̂�k,t� − K�k��
̂�̂�k,t�� , �A9�

�
̂
�k,t� = − ��t��
̂�̂�k,t� , �A10�

�
̂g�
�k,t� = − ��t�� 1

T�0
�
̂ĝ�

�k,t� − �t�
̂�̂�
�k,t�� ,

�A11�

�
̂��
�k,t� = − ��t��
̂ĝ�

�k,t� , �A12�

�
̂
̂�k,t� = �
̂
̂�k,− t� , �A13�

�
̂�̂�
�k,t� = − �
̂�̂�

�k,− t� . �A14�

APPENDIX B: CALCULATION OF FDR-PRESERVING
SD EQUATION

In this appendix, we calculate the 
̂� component of the
SD equation with the aid of the result in Appendix A. From

Eqs. �23� and �31�, only the −
̂
 term exists in Sg, which

includes 
̂. Therefore, we obtain �G0
−1�
̂��X1−X2�=��
��X1

−X2�. Thus, the 
̂� component of G0
−1 ·G satisfies

�G0
−1 · G�
̂��k,t� = G
��k,t� . �B1�

On the other hand, the 
̂� component of � ·G is expressed
as

�� · G�
̂��k,t� = 	
−�

�

ds��
̂��k,t − s�G���k,s� + �
̂
�k,t − s�G
��k,s� + �
̂g�
�k,t − s�Gg���k,s� + �
̂��

�k,t − s�G����k,s�

+ �
̂�̂�k,t − s�G�̂��k,s� + �
̂
̂�k,t − s�G
̂��k,s� + �
̂ĝ�
�k,t − s�Gĝ���k,s� + �
̂�̂�

�k,t − s�G�̂���k,s�� . �B2�

By using relations �A9�–�A12�, the first four terms on the right-hand side of Eq. �B2� can be rewritten as
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− 	
−�

t

ds
��s�
̂
̂�k,t − s� + K�k��
̂�̂�k,t − s��G���k,s� + �
̂�̂�k,t − s�G
��k,s�

+ � 1

T�0
�
̂ĝ�

�k,t − s� + �s�
̂�̂�
�k,t − s��Gg���k,s� + �
̂ĝ�

�k,t − s�G����k,s�

= − �
̂
̂�k,0�G���k,t� − 	

−�

t

ds
�
̂�̂�k,t − s��K�k�G���k,s� + G
��k,s�� − �
̂
̂�k,t − s��sG���k,s�

+ �
̂ĝ�
�k,t − s�� 1

T�0
Gg���k,s� + G����k,s�� − �
̂�̂�

�k,t − s��sGg���k,s�
 , �B3�

where the boundary terms vanish except for
�
̂
̂�k ,0�G���k , t� because of �
̂�̂�

�k ,0�=0 from �A14� and
G���k ,−��=Gg���k ,−��=0.

Similarly, from relations �A5�–�A8� the last four terms on
the right-hand side of Eq. �B2� become

	
−�

0

ds
�
̂�̂�k,t − s��K�k�G���k,s� + G
��k,s��

− �
̂
̂�k,t − s��sG���k,s�

+ �
̂ĝ�
�k,t − s�� 1

T�0
Gg���k,s� + G����k,s��

− �
̂�̂�
�k,t − s��sGg���k,s�
 . �B4�

From Eqs. �B1�–�B4�, we obtain the 
̂� component of the
FDR-preserving SD equation as

G
��k,t� + �
̂
̂�k,0�G���k,t�

= − 	
0

t

ds
�ĝ��̂�k,t − s��K�k�G���k,s� + G
��k,s��

− �ĝ�
̂�k,t − s��sG���k,s� − �ĝ��̂�
�k,t − s��sGg���k,s�

+ �ĝ�ĝ�
�k,t − s�� 1

T�0
Gg���k,s� + G����k,s��
 . �B5�

Similarly, other components of the SD equation can be ob-
tained with the aid of the time-reversal symmetry �A1�.

APPENDIX C: SOME EXACT RELATIONS
OF EQUAL-TIME CORRELATION

FUNCTIONS AND SELF-ENERGIES

In this appendix, we derive some relations for the equal-
time correlation functions and the self-energies from the ef-
fective free energy F. Here, we note that the mean value is
calculated by the canonical average over F. Since the equal-
time correlation function satisfies

����r�
�F

���r��� = T��r − r��

= T����r�K � ���r��� + T����r�
�r��� .

�C1�

The Fourier transform of this equation becomes

����k�
�− k�� = 0, �C2�

where we have used the relation K�k�=G��
−1�k ,0�. Thus, we

obtain

G�
�k,0� = 0. �C3�

Substituting �C3� into Eq. �35�, and setting t=0, we obtain

�
̂
̂�k,0� = 0. �C4�

Similarly, from the relations

�g��r���r��
�F

�g��r��� = T�0�����r − r�� = �g��r�g��r���

�C5�

and

�g��r�
�F

�g��r��� = T�����r − r��

= �0
−1�g��r�g��r��� + T�g��r����r��� ,

�C6�

we obtain

Gg���
�k,0� = G��g�

�k,0� = 0. �C7�

Substituting Eq. �C7�, into Eq. �37� at t=0, we obtain

��̂��̂�
�k,0� = 0. �C8�

APPENDIX D: LIST OF THREE-POINT VERTICES

In this appendix, we present all three-point vertices that
are defined by �47�,

V�̂�g�
�X1,X2,X3� = − �0

−1�r1���X1 − X2���X1 − X3� ,

�D1�
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V�̂���
�X1,X2,X3� = − T�r1���X1 − X2���X1 − X3� , �D2�

V
̂���X1,X2,X3� = −
1

m�0
2��X1 − X2���X1 − X3� , �D3�

V
̂g�g�
�X1,X2,X3� = −

1

T�0
2�����X1 − X2���X1 − X3� ,

�D4�

Vĝ����X1,X2,X3� = − T���X1 − X2��r1�K�X1 − X3�

+ ��X1 − X3��r1�K�X1 − X2�� , �D5�

Vĝ��
�X1,X2,X3� = − T��X1 − X2��r1���X1 − X3� , �D6�

Vĝ�g�g�
�X1,X2,X3� = − �0

−1�����r1����X1 − X2���X1 − X3��

+ �����X1 − X2��r1���X1 − X3�� , �D7�

Vĝ�g���
�X1,X2 . X3� = − T�����r1����X1 − X2���X1 − X3��

+ �����X1 − X2��r1���X1 − X3�� ,

�D8�

V�̂��g�
�X1,X2,X3� = −

1

T�0
2�����X1 − X2���X1 − X3� ,

�D9�

where ��X1−X2����r1−r2 , t1− t2� and K�X1−X2����t1
− t2�K���r1−r2�.
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